

Fundamental of Shortest Path Algorithms

Kuan-Yu Chen (陳冠宇)

2019/06/04 @ TR-310-1, NTUST

Review

- They each use a specific rule to determine a safe edge in line 3 of GENERIC-MST

```
GENERIC-MST( $G, w$ )
```

```
1    $A = \emptyset$ 
2   while  $A$  does not form a spanning tree
3       find an edge  $(u, v)$  that is safe for  $A$ 
4        $A = A \cup \{(u, v)\}$ 
5   return  $A$ 
```

- In Kruskal’s algorithm
 - The set A is a forest whose vertices are all those of the given graph
 - The safe edge added to A is always a least-weight edge in the graph that **connects two distinct components**
- In Prim’s algorithm
 - The set A forms a single tree
 - The safe edge added to A is always a least-weight edge **connecting the tree to a vertex not in the tree**

Shortest-paths Problem

- In a *shortest-paths problem*
 - Given a weighted directed graph $G = (V, E)$
 - The weight function $w: E \rightarrow \mathbb{R}$ mapping edges to real-valued weights
 - The **weight** $w(p)$ of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is the sum of the weights of its constituent edges

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$

- We define the **shortest-path weight** $\delta(u, v)$ from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p): u \xrightarrow{p} v\}, & \text{if there is a path from } u \text{ to } v \\ \infty & \text{, otherwise} \end{cases}$$

- We shall focus on the *single-source shortest-paths problem*
 - Given a graph $G = (V, E)$, we want to find a shortest path from a given **source** vertex $s \in V$ to each vertex $v \in V$

Optimal Substructure.

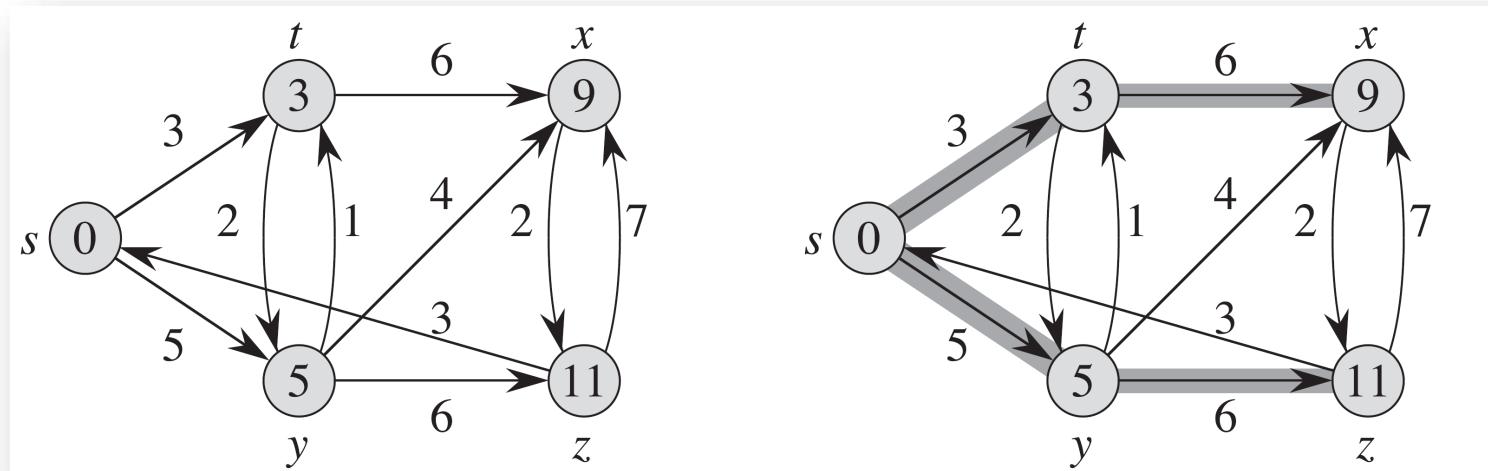
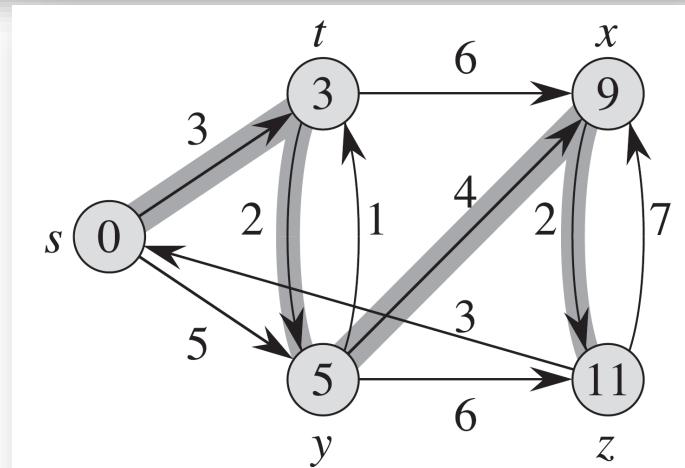
- Shortest-paths algorithms typically rely on the property that a shortest path between two vertices contains other shortest paths within it
 - Lemma: *Subpaths of shortest paths are shortest paths*
 - Given a weighted, directed graph $G = (V, E)$ with weight function $w: E \rightarrow \mathbb{R}$
 - Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to v_k
 - For any i and j such that $0 \leq i \leq j \leq k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to v_j
 - Then, p_{ij} is a shortest path from v_i to vertex v_j

Optimal Substructure..

- Lemma: ***Subpaths of shortest paths are shortest paths***
 - Given a weighted, directed graph $G = (V, E)$ with weight function $w: E \rightarrow \mathbb{R}$
 - Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to v_k
 - For any i and j such that $0 \leq i \leq j \leq k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to v_j
 - Then, p_{ij} is a shortest path from v_i to vertex v_j
- Proof:
 - If we decompose path p into $v_0 \xrightarrow{p_{0i}} v_i \xrightarrow{p_{ij}} v_j \xrightarrow{p_{jk}} v_k$, we have that $w(p) = w(p_{0i}) + w(p_{ij}) + w(p_{jk})$
 - Assume that there is a path p'_{ij} from v_i to v_j with weight $w(p'_{ij}) < w(p_{ij})$, then $v_0 \xrightarrow{p_{0i}} v_i \xrightarrow{p'_{ij}} v_j \xrightarrow{p_{jk}} v_k$ is a path from v_0 to v_k whose weight $w(p_{0i}) + w(p'_{ij}) + w(p_{jk})$ is less than $w(p)$ $\rightarrow \leftarrow$

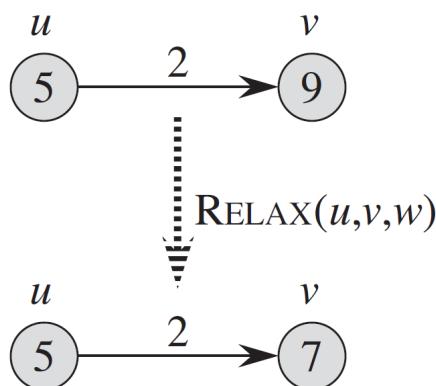
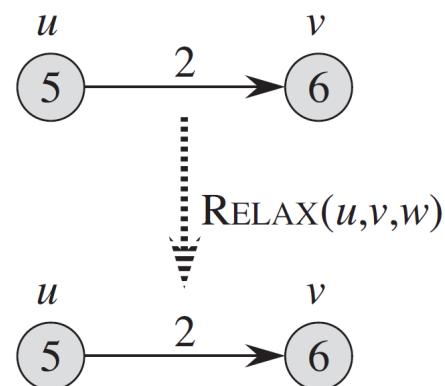
Unique?

- Shortest paths are not necessarily unique



Relaxation

- For each vertex $v \in V$, we maintain an attribute $v.d$, which is an upper bound on the weight of a shortest path from source s to v
 - $v.d$ is a *shortest-path estimate*
- The process of *relaxing* an edge (u, v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating $v.d$
 - If $v.d > u.d + w(u, v)$, then $v.d = u.d + w(u, v)$

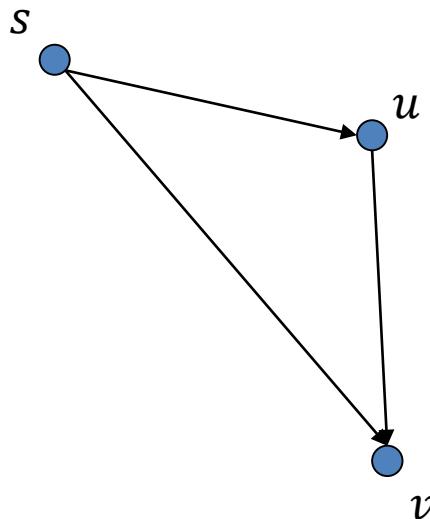


```
RELAX( $u, v, w$ )
1  if  $v.d > u.d + w(u, v)$ 
2       $v.d = u.d + w(u, v)$ 
3       $v.\pi = u$ 
```

Properties.

- **Triangle inequality**

- Let $G = (V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s . Then, for all edges $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$



Properties..

- **Upper-bound property**

- Let $G = (V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $s \in V$ be the source vertex, and let the graph be initialized by `INITIALIZESINGLE-SOURCE(G, s)`. Then, $v.d \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps on the edges of G . Moreover, once $v.d$ achieves its lower bound $\delta(s, v)$, it never changes.
- Proof:
 - $v.d \geq \delta(s, v)$ is true after initialization for all $v \in V - \{s\}$
 - By considering the relaxation of edge (u, v) , only $v.d$ may change
 - If $v.d$ changes, we have:
$$v.d = u.d + w(u, v) \geq \delta(s, u) + w(u, v) \geq \delta(s, v)$$

the invariant is maintained!

- $v.d$ never changes once $v.d = \delta(s, v)$, since it achieves the lower-bound $\delta(s, v)$ and relaxation steps do not increase d value

`INITIALIZE-SINGLE-SOURCE(G, s)`

```
1  for each vertex  $v \in G.V$ 
2       $v.d = \infty$ 
3       $v.\pi = \text{NIL}$ 
4   $s.d = 0$ 
```

Properties...

- **Convergence property**

- Let $G = (V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $s \in V$ be the source vertex, and let $s \rightsquigarrow u \rightarrow v$ be a shortest path in G for some vertices $u, v \in V$. Suppose that G is initialized by INITIALIZE-SINGLE-SOURCE(G, s) and then a sequence of relaxation steps that includes the call $\text{RELAX}(u, v, w)$ is executed on the edges of G . If $u.d = \delta(s, u)$ at any time prior to the call, then $v.d = \delta(s, v)$ at all times after the call.
- Proof:
 - We are sure that $u.d = \delta(s, u)$ before and after we relax (u, v)
 - After relaxing edge (u, v) , we have $v.d \leq u.d + w(u, v) = \delta(s, u) + w(u, v) = \delta(s, v)$
 - By the upper-bound property, $v.d \geq \delta(s, v)$
 - Consequently, we conclude that $v.d = \delta(s, v)$

Properties....

- **Path-relaxation property**

- Let $G = (V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $s \in V$ be the source vertex, and suppose that G is initialized by INITIALIZE-SINGLE-SOURCE(G, s). Consider any shortest path $p = \langle v_0, v_1, \dots, v_k \rangle$ from $s = v_0$ to v_k , and then a sequence of relaxation steps occurs that includes, in order, relaxing the edges $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$ after these relaxations and at all times afterward.
 - This property holds no matter what other edge relaxations occur, including relaxations that are intermixed with relaxations of the edges of p
- Proof:
 - For $v_0, v_0 \cdot d = 0 = \delta(s, s)$
 - By induction theorem, we first assume that $v_{i-1} \cdot d = \delta(s, v_{i-1})$, then if we relax (v_{i-1}, v_i) , we have $v_i \cdot d = \delta(s, v_i)$ by convergence property

Properties

Triangle inequality

For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Upper-bound property

We always have $v.d \geq \delta(s, v)$ for all vertices $v \in V$, and once $v.d$ achieves the value $\delta(s, v)$, it never changes.

No-path property

If there is no path from s to v , then we always have $v.d = \delta(s, v) = \infty$.

Convergence property

If $s \sim u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v) , then $v.d = \delta(s, v)$ at all times afterward.

Path-relaxation property

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p .

Predecessor-subgraph property

Once $v.d = \delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s .

Questions?

kychen@mail.ntust.edu.tw